Positive Topline Data from Phase 2 Older Adult Trial and Path Forward for RSV F Vaccine Programs

Investor Slide Deck
July 24, 2017
Safe Harbor Statement

Certain information, particularly information relating to future performance and other business matters, including expectations regarding clinical development, market opportunities and anticipated milestones constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act.

Forward-looking statements may generally contain words such as “believe,” “may,” “could,” “will,” “possible,” “can,” “estimate,” “continue,” “ongoing,” “consider,” “intend,” “plan,” “project,” “expect,” “should,” “would,” or “assume” or variations of such words or other words with similar meanings. Novavax cautions that these forward-looking statements are subject to numerous assumptions, risks and uncertainties that change over time and may cause actual results to differ materially from the results discussed in the forward-looking statements.

Uncertainties include but are not limited to clinical trial results, dependence on third party contractors, competition for clinical resources and patient enrollment and risks that we may lack the financial resources to fund ongoing operations.

Additional information on Risk Factors are contained in Novavax’ filings with the U.S. Securities and Exchange Commission, including our Annual Report on Form 10-K, Quarterly Reports on Form 10-Q, and Current Reports on Form 8-K, which are available at http://www.sec.gov.

Forward-looking statements are based on current expectations and assumptions and currently available data and are neither predictions nor guarantees of future events or performance.

Current results may not be predictive of future results.

You should not place undue reliance on forward-looking statements which speak only as of the date hereof.

The Company does not undertake to update or revise any forward-looking statements after they are made, whether as a result of new information, future events, or otherwise, except as required by applicable law.
<table>
<thead>
<tr>
<th>Agenda</th>
<th></th>
</tr>
</thead>
</table>
| **Introduction** | **Stanley C. Erck**
President and CEO |
| **RSV F Vaccine for Older Adults**
• Review of findings and clinical results
• Path forward | **Gregory M. Glenn, M.D.**
President, Research and Development
Louis Fries, III, M.D.
SVP, Chief Medical Officer |
| **RSV F Vaccine for Infants via Maternal Immunization**
• Phase 3 trial status | **Gregory M. Glenn, M.D.**
President, Research and Development |
| **Summary and Q&A** | **Stanley C. Erck**
President and CEO |
We have learned:

• RSV F Vaccine demonstrated evidence of efficacy in several trials
 • OA Phase 2
 • Including in follow-up trial with repeat dosing over 2 seasons
 • IVM Program (2 seasons)
 • Primate Challenge Trials

• In Phase 3, the RSV F Vaccine, despite a lower attack rate year, had signs of efficacy in ARD and higher risk groups (i.e., COPD, >75 y)

• Immune response to RSV F Vaccine can be improved with adjuvant and second dose

• Vaccine antigen is a stable prefusogenic RSV F protein

• Vaccine antigen stimulates broadly neutralizing antibodies to multiple sites (pre-F and post-F), including some novel sites
RSV Vaccine Development Remains a Core Strength of Novavax

We remain the leader in RSV Vaccination

Older Adults

• Expect to conduct Phase 2 efficacy trial in higher risk groups, including COPD
• COPD represents a very large market opportunity
• Expand into all older adults

Infants via Maternal Immunization

• Continuing Phase 3 trial in pregnant women
• Now vaccinating women in 11 countries
• Expect to conduct an informational analysis by year-end
Significant Developments in Influenza Program Support Entry into First Clinical Trial This Quarter

• Important new data in a challenge study comparing our candidate with Sanofi’s High Dose flu vaccine

• Leading to a first clinical trial with our Matrix-M™ adjuvanted recombinant nanoparticle flu vaccine this quarter

We will announce data from the ferret challenge trial and the design of our coming Phase 1/2 influenza clinical trial during our quarterly earnings call on August 8th
RSV Vaccine Construct Update

Gregory M. Glenn, M.D.
The Novavax RSV F Vaccine Development Path

Clinical Vaccinology Approach: Following compelling clinical evidence to move to Phase 3

- **Clinical Signals:** Pali, Mota, PFP, Infectious Immunity
 - Full length purified F protein not stable
 - Modifications lead to **Stable F vaccine**

- **Stable RSV F Vaccine in Animal Model**
 - Cotton rats protected from RSV (POC)
 - F, PCA correlate with MN Abs
 - Efficacious Vaccine

- **RSV-101: 1st Clinical Trial**
 - PCA and MN broadly neutralizing Abs induced

Structure-Based Approach

- **Prefusion/postfusion Structures**
- **Novel, Potent Neutralizing mAbs**
- **Stable Prefusogenic RSV F Vaccine**
- **Processing of F during infection**

IVM Vaccine Development

- Protection in baboon model
- Dose optimization in WOCBA
 - Reduction in infection observed x 2
- Antibody Transfer, Pregnant Women

OA Vaccine Development

- E-102: PCA/MN Induced in OA
- E-201: OA efficacy
- **E-301 failed to meet endpoint**

E-205

- Evaluate adjuvants and two doses in Older Adults
- Enhancement of Abs more potent than palivizumab
- Boosting of prefusion antibodies

Next Clinical Trial

M-301 in progress
Review of RSV F Vaccine Clinical Development Program for Older Adults

2014/2015
E-201
Safety & Efficacy

2015/2016
E-202
Repeat Dosing

2016/2017
E-205
Adjuvant/Formulation

E-301 (Resolve)
Pivotal Efficacy
Outline of Findings

RSV F Vaccine Construct

- New insights into the vaccine responses confirm its potency
- Preclinical and clinical data confirm its potential for protection

Dosing and Adjuvantation (E-205)

- Adjuvants and/or 2 dose regimens significantly improve multiple important measures of immunity
- Greater durability of vaccine-induced responses observed

Clinical Trial Data (E-201 and E-301)

- Antibodies to RSV correlate with decreased infection risk
- Pre-existing RSV immunity decreased the attack rate and diminished the window to demonstrate efficacy
- Yet, in a high-risk population, efficacy observed in both trials
F Protein Structure Evolves During Infection

RSV Entry into Host Cells and the Fusion (F) Protein Processing Leads to an Activated F Protein, Membrane Fusion and Delivery of RSV RNA into the Cytoplasm

F Protein States Found in Nature: The Novavax RSV Vaccine is Similar to the Prefusogenic F

RSV F0

Pre-fusogenic

Prefusion & Postfusion

Novavax’ RSV Vaccine

= Furin Cleavage sites

All RSV F Vaccine Constructs are “Like” Constructs

Novavax Stable Prefusogenic Vaccine

Prefusion (NIH DS-Cav1)

Postfusion (NIH sF)
Our Vaccine Construct is a Stable Prefusogenic RSV F Nanoparticle

RSV F Vaccine Structure

- Prefusogenic F protein trimers
- 40nm protein/detergent nanoparticles
- Highly stable – resists denaturation and aggregation
- Phase 3 manufacturing process appropriate for commercialization

RSV F Vaccine Activity

- Induces **highly potent, broadly neutralizing antibodies**:
 - More potent than palivizumab and comparable to motavizumab
 - Epitopes displayed by both prefusion and postfusion forms of the F protein
Preclinical and Clinical Evidence of Vaccine Efficacy

• Cotton rat protection against virus challenge including mutants that are resistant to mAb-induced resistant strains\(^1,2\)

• Protection against challenge of infant baboons born to immunized mothers\(^3\)

• Prevention of infection in young women in two separate trials over two RSV seasons (M-201 and M-202) \(^4,5\)

• Decreased RSV acute respiratory disease in older adults after a single dose (E-201) \(^6\)

• Decreased RSV acute respiratory disease in older adults after a second annual dose (E-202) \(^6\)

• Reduction of hospitalization from COPD exacerbations in Phase 2 and 3 trials (E-201 and E-301; unpublished)
<table>
<thead>
<tr>
<th>No.</th>
<th>References</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Fries F. Presentation at: RSV 16 10th International Respiratory Syncytial Virus Symposium; Sept. 29, 2016; Patagonia, AR.</td>
<td>N/A</td>
</tr>
</tbody>
</table>
E-205
Evaluation of Adjuvants and Dose Regimens with RSV F Vaccine

<table>
<thead>
<tr>
<th>When</th>
<th>Trial initiated in Jan 2017 in Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Topline serology data through Day 119 now available for most parameters (Day 56 for RSV MN)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
<th>300 healthy older adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Randomized, observer-blinded, placebo-controlled, evaluation of RSV F with and without aluminum phosphate or our proprietary Matrix-M™ adjuvant; in one or two-dose regimens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives</th>
<th>To ascertain whether adjuvantation or a two-dose primary regimen can alter the quantity and quality of the immune response to RSV F Vaccine in older adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To identify one or a small number of regimens meriting further evaluation in additional safety and immunogenicity and eventual efficacy</td>
</tr>
<tr>
<td></td>
<td>To evaluate the safety of revised regimens and formulations of RSV F in older adults</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endpoints</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RSV-specific immune responses by MN, anti-F IgG, PCA with site II antibody avidity assessments, and B and T cell responses</td>
</tr>
</tbody>
</table>
Why Pursue a Quantitatively Better Immune Response?

Study participants without RSV disease had higher titers on average than participants with RSV disease.

No clear protective cut-off determined.

*Case-control analysis matching on age, site, and timing of illness.
E-205 Treatment Groups

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Subjects Per Group</th>
<th>Study Day</th>
<th>Day 0</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RSV F Dose</td>
<td>Aluminum Dose</td>
<td>Matrix-M1 Dose</td>
</tr>
<tr>
<td>A</td>
<td>25</td>
<td>135 µg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>95 µg</td>
<td>0.3 mg</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>95 µg</td>
<td>0.3 mg</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>120 µg</td>
<td>0.4 mg</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>25</td>
<td>120 µg</td>
<td>0.4 mg</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>25</td>
<td>135 µg</td>
<td>0</td>
<td>50 µg</td>
</tr>
<tr>
<td>G</td>
<td>25</td>
<td>135 µg</td>
<td>0</td>
<td>50 µg</td>
</tr>
<tr>
<td>H</td>
<td>25</td>
<td>65 µg</td>
<td>0</td>
<td>50 µg</td>
</tr>
<tr>
<td>J</td>
<td>25</td>
<td>65 µg</td>
<td>0</td>
<td>50 µg</td>
</tr>
<tr>
<td>K</td>
<td>25</td>
<td>35 µg</td>
<td>0</td>
<td>50 µg</td>
</tr>
<tr>
<td>L</td>
<td>25</td>
<td>35 µg</td>
<td>0</td>
<td>50 µg</td>
</tr>
<tr>
<td>M (Placebo)</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total 300 Subjects
Kinetics of Anti-F IgG in Representative Groups: Adjuvant Effect, 2nd Dose Effect and Durability of Responses Enhanced

Fold Rises in Anti-F IgG

- Geometric Mean Rise from Day 0 (95%CI)
- Study Days from Dose 1

- 135µg F x 1
- 135µg F + M\texttimes M x 1
- 135µg F + M\texttimes M x 2

- p < 0.0001
- p = 0.0099
Kinetics of PCA in Representative Groups: Adjuvant Effect, 2nd Dose Effect and Durability of Responses Enhanced

Fold Rises in PCA

Geometric Mean Rise from Day 0 (95% CI)

Study Days from Dose 1

- 135µg F x 1
- 135µg F + MxM x 1
- 135µg F + MxM x 2

p < 0.0001
p = 0.004
p = 0.004
Enhancement of Neutralizing Antibody Responses
Induction of Antibodies to Prefusion Epitopes

E-205: Day 56 serum

n = 60 (10 per group) for ACE; all subjects for RSV MN
Enhancement of Antibody Avidity by Adjuvanted Regimens

Avidity Maturation of Site II Antibodies

Percentage of Subjects

Site II antibodies

K\text{off}

- <10^0 to -1
- <10^-1 to -2
- <10^-2 to -3
- <10^-3 to -4
- < 10^-4 to -5
- < 10^-5

day 0	day 21	day 56	day 0	day 21	day 56	day 0	day 21	day 56	day 0	day 21	day 56
Placebo | 135ug x 1 | 135ug + MxM x 1 | 135ug + MxM x 2

NOVAVAX
Creating tomorrow's Vaccines Today

24
F Protein-specific Memory B Cell ELISpot Responses are Strong with All Formulations

Counts of Memory B Cells Specific for RSV F per 10^6 PBMC at Day 28

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Doses</th>
<th>Day 0</th>
<th>Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>2</td>
<td>68</td>
<td>48</td>
</tr>
<tr>
<td>135µg F</td>
<td>1</td>
<td>52</td>
<td>630</td>
</tr>
<tr>
<td>120µg F + Al</td>
<td>1</td>
<td>76</td>
<td>991</td>
</tr>
<tr>
<td>120µg F + MxM</td>
<td>2</td>
<td>100</td>
<td>1075</td>
</tr>
<tr>
<td>135µg F + MxM</td>
<td>1</td>
<td>73</td>
<td>804</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>96</td>
<td>879</td>
</tr>
</tbody>
</table>

n = 54 (4 placebo, 10 per vaccine group)
Matrix-M Adjuvantation Enhances Triple Cytokine Positive RSV F-specific CD4+ Responses

CD4+ T Cell Responses by Intracellular Staining

CD4+ T cells Producing IFNγ, TNFα, and IL-2 After Stimulation with RSV F Peptide Pools

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Doses</th>
<th>Day 0</th>
<th>Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>2</td>
<td>0.026</td>
<td>0.014</td>
</tr>
<tr>
<td>135µg F</td>
<td>1</td>
<td>0.028</td>
<td>0.124</td>
</tr>
<tr>
<td>120µg F + Al</td>
<td>1</td>
<td>0.016</td>
<td>0.093</td>
</tr>
<tr>
<td>135µg F + MxM</td>
<td>2</td>
<td>0.011</td>
<td>0.218</td>
</tr>
<tr>
<td>135µg F + MxM</td>
<td>1</td>
<td>0.023</td>
<td>0.223</td>
</tr>
</tbody>
</table>

n = 54 (4 placebo, 10 per vaccine group)
Adjuvant effects

- The adjuvants meaningfully increased immunity in measures shown to decrease infection and measures generally associated with effective immunity
 - Anti-F and PCA
 - MN titers
 - Avidity of antibodies to neutralizing epitopes
 - Memory B cell and CD4+ T cells specific for F protein
- Durability of the responses are important and are improved with 2 doses

The totality of the immune effects makes use of the adjuvants desirable, and likely to de-risk the next steps

- Both classic and new immune measures build our confidence that these are better formulations to use in the next steps

With respect to safety:

- All adjuvanted formulations were clinically tolerable
Evidence Base for RSV F Vaccine in Older Adults

Lou Fries III, M.D.
Hypothesis for Outcomes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV OA</td>
<td>E-201</td>
<td>E-301</td>
</tr>
<tr>
<td>RSV ARD</td>
<td>4.9%</td>
<td>2.0%</td>
</tr>
<tr>
<td>RSV msLRTD</td>
<td>1.8%</td>
<td>0.4%</td>
</tr>
<tr>
<td>RSV Circulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSV Susceptibility</td>
<td>E-201</td>
<td>E-301</td>
</tr>
<tr>
<td>MN-B (GMT) baseline</td>
<td>267</td>
<td>447</td>
</tr>
</tbody>
</table>

- Lower in 2015/16 on basis of trial data; confirmed by external data
- Lower in 2015/16 on basis of RSV/B MN data

Similar on basis of RSVAlert® data
Baseline RSV Immunity in E-201 and E-301

RSV MN Titer Distributions at Baseline

Proportion of Population

Log2 RSV MN Titers

E-201

E-301
Hypothesis for Outcomes

2014-2015

<table>
<thead>
<tr>
<th>RSV OA Attack Rates</th>
<th>E-201</th>
<th>E-301</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV ARD</td>
<td>4.9%</td>
<td>2.0%</td>
</tr>
<tr>
<td>RSV msLRTD</td>
<td>1.8%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

2015-2016

- **Lower in 2015/16 on basis of trial data; confirmed by external data**

RSV Circulation

- **Similar on basis of RSVAlert® data**

RSV Susceptibility

<table>
<thead>
<tr>
<th>E-201</th>
<th>E-301</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-B (GMT) baseline</td>
<td>267</td>
</tr>
</tbody>
</table>

Vaccine Efficacy

- **Lower in 2015/16 on basis of trial data**

<table>
<thead>
<tr>
<th>E-201</th>
<th>E-301</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV ARD</td>
<td>41%</td>
</tr>
<tr>
<td>RSV msLRTD</td>
<td>64%</td>
</tr>
</tbody>
</table>
Flu Examples of Attack Rate Effects

<table>
<thead>
<tr>
<th>Series</th>
<th>Author</th>
<th>Year</th>
<th>Placebo Attack Rate</th>
<th>Circulating Strain(s) Match to Vaccine</th>
<th>Case Defined by:</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ohmit et al¹</td>
<td>2004-5</td>
<td>7.8%</td>
<td>Drifted</td>
<td>Culture or PCR</td>
<td>75% (42, 90)</td>
</tr>
<tr>
<td></td>
<td>Ohmit et al²</td>
<td>2005-6</td>
<td>1.8%</td>
<td>Good match</td>
<td></td>
<td>16% (-171,70)</td>
</tr>
<tr>
<td></td>
<td>Monto et al³</td>
<td>2007-8</td>
<td>10.8%</td>
<td>Low level drift</td>
<td></td>
<td>68% (46, 81)</td>
</tr>
<tr>
<td>2</td>
<td>Hoberman et al⁴</td>
<td>1999-2000</td>
<td>15.9%</td>
<td>Matched</td>
<td>Culture</td>
<td>66% (34, 82)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000-1</td>
<td>3.3%</td>
<td>Matched</td>
<td></td>
<td>-7% (-247, 67)</td>
</tr>
<tr>
<td>3</td>
<td>Beran et al⁵</td>
<td>2005-6</td>
<td>0.2%</td>
<td>Matched A Viruses</td>
<td>Culture</td>
<td>25.1% (-261, 82)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.9% all</td>
<td>Largely mismatched</td>
<td></td>
<td>22.3% (-49, 59)</td>
</tr>
<tr>
<td></td>
<td>Beran et al⁶</td>
<td>2006-7</td>
<td>3.2%</td>
<td>Predominantly matched</td>
<td></td>
<td>61.6% (46, 73)</td>
</tr>
</tbody>
</table>

More Susceptible Populations MayProvide a Window to Show Efficacy

- Even in a season characterized by low population susceptibility/high population immunity, there are individuals or subsets of individuals who succumb to infection and/or complications of infection because of heightened susceptibility due to:
 - Immunosenescence
 - Frailty
 - Comorbidity

- Promising target population: COPD
Impact of Vaccine on COPD Exacerbations

Post-hoc Analyses of Hospitalizations for **All Cause** COPD Exacerbations in E-201 and E-301

Data from the **Safety** Database

<table>
<thead>
<tr>
<th>E301 Day 0-182</th>
<th>Placebo</th>
<th>Vaccine</th>
<th>VE%</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD hospitalization rate in all subjects</td>
<td>23/5935 (0.39%)</td>
<td>9/5921 (0.15%)</td>
<td>60.8%</td>
<td>15.2—81.9</td>
<td>0.017</td>
</tr>
<tr>
<td>COPD hospitalization rate in subjects with baseline COPD</td>
<td>15/362 (4.1%)</td>
<td>9/403 (2.2%)</td>
<td>46.1%</td>
<td>-23—76.4</td>
<td>0.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E201 Day 0-182</th>
<th>Placebo</th>
<th>Vaccine</th>
<th>VE%</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD hospitalization rate in all subjects</td>
<td>4/801 (0.50%)</td>
<td>0/798 (0%)</td>
<td>100%</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>COPD hospitalization rate in subjects with baseline COPD</td>
<td>2/62 (3.2%)</td>
<td>0/58 (0%)</td>
<td>100%</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

- After Day 182 (i.e., after the winter-spring RSV season) the effect on COPD exacerbation essentially disappears in E-301
- After Day 182, an effect appears to continue in E-201
COPD Hospitalizations in E-301

All-Cause COPD Exacerbation Hospitalization-Free Survival in E-301

Days From Treatment

Proportion of Population Free of COPD Exacerbation

Active
Placebo
Summary

Vaccine Construct

- Characterization has confirmed that our stable prefusogenic RSV-F protein is a highly potent immunogen that elicits broadly neutralizing antibodies to multiple epitopes

Adjuvant Formulation and Regimen

- The adjuvants and dose regimens significantly increased the magnitude, quality and durability of the immune responses

Phase 2 and Phase 3 Efficacy Results

- Antibodies that we measured were associated with reduced risk of RSV disease
- Unusually high background immunity led to a low attack rate and low vaccine efficacy in Phase 3
 - Influenza trials provide precedent for low efficacy in season with low attack rate
 - Profound vaccine effect seen in both E-201 and 301 against COPD populations

Next Steps

- Combination of potent immunogen, adjuvant and 2- dose regimen warrants a Phase 2 efficacy trial in older adults and evaluation of COPD exacerbations as a prospective endpoint
Phase 3 Study:
Infants via Maternal Immunization

Gregory M. Glenn, M.D.
RSV is the most common cause of lower respiratory tract infections among young children in the United States and worldwide\(^1\)

RSV is the leading cause of hospitalization among children <1 year old in the United States\(^2,3\)

Globally, RSV is second only to malaria as a cause of death in children <1 year old\(^4\)

The Bill and Melinda Gates Foundation has prioritized an RSV vaccine, as a reduction in RSV disease will decrease infant mortality and thus, the Foundation is supporting the Prepare trial through an $89M grant

RSV is largely a disease of healthy, full-term infants

The smaller airways and immature immune systems of infants make them more susceptible to severe disease

Natural immunity, derived from the mother, is relatively ineffective

Policy Advances in Support of Maternal Immunization

<table>
<thead>
<tr>
<th>Vaccine Injury Compensation Program (VICP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amendment in 21st Century Cures Act: As of December 13, 2016, program covers “both a woman who received a covered vaccine while pregnant and any child who was in utero” under government no-fault insurance program</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Support from Medical Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Growing acceptance of maternal vaccination for flu and pertussis among HCPs and mothers</td>
</tr>
<tr>
<td>• American College of Obstetrics and Gynecology conducts CME-accredited webinar: “Respiratory Syncytial Virus: The Need for a Maternal Immunization Strategy”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACIP RSV Working Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CDC Advisory Committee on Immunization Practices (ACIP) established RSV Working Group, May 2016</td>
</tr>
<tr>
<td>• First step towards ACIP consideration for recommendation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESCEU (REspiratory Syncytial virus Consortium in EUrope)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• EU consortium of global leaders in RSV research (academia, public policy, industry)</td>
</tr>
<tr>
<td>• Epidemiology, surveillance and economic burden research</td>
</tr>
</tbody>
</table>
Novavax Has Conducted a Number of Phase 2 Trials with RSV F Vaccine

Non-pregnant women

- **Safety and immunogenicity confirmed** in dose selection trials
- Demonstration of **~50% reduction of RSV infections** in vaccine groups in two trials in two separate seasons

Pregnant women

- Vaccine was **well-tolerated**
- Response to RSV F vaccine in pregnant women **replicated immune response in non-pregnant women**
- **Anti-F, PCA, and neutralizing transplacental antibody transfer confirmed**
- Observed **half-life of ~40 days** for MN and PCA through first 60 days post delivery
- Suggests protection of infants for **up to 180 days**
Phase 3 RSV F Vaccine for Infants via Maternal Trial: Goals and Design

<table>
<thead>
<tr>
<th>Primary Objective</th>
<th>Determine the efficacy of maternal immunization with the RSV F vaccine against symptomatic RSV lower respiratory tract infection (LRTI) with objective measures of medical significance of LRTI from 90-180 days of life in infants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Randomized, Observer-Blind, Placebo-Controlled, Group Sequential</td>
</tr>
<tr>
<td>Number of participants</td>
<td>• Minimum 4,600 women</td>
</tr>
<tr>
<td>Global Sites</td>
<td>• Year 3: US, Mexico, Chile, Argentina, UK, Spain, South Africa, Australia, New Zealand, Philippines, India</td>
</tr>
</tbody>
</table>
| **Length of Participation** | • Maternal Participants: 9 months
• Infant Participants: 1 year |
| | 1 IM Injection (RSV F Vaccine or Placebo), 28-36 weeks EGA |
The Phase 3 “Prepare Trial” has Entered its Third Year

Global Infrastructure has been established to drive enrollment and surveillance

Recruitment and surveillance are going well and indicate trial feasibility

- Global Season 1: 16 sites in 5 countries
- Global Season 2: 46 sites in 7 countries
- Global Season 3: 80 sites in 11 countries

Argentina
Australia
Chile
India
Mexico
New Zealand
Philippines
South Africa
Spain
United Kingdom
United States
Closing Remarks

Question/Answer

Stanley C. Erck
Vaccine Construct

- Characterization has confirmed that our stable prefusogenic RSV-F protein is a highly potent immunogen that elicits broadly neutralizing antibodies to multiple epitopes.

Adjuvant Formulation and Regimen

- The adjuvants and dose regimens significantly increased the magnitude, quality and durability of the immune responses.

Phase 2 and Phase 3 Efficacy Results

- Antibodies that we measured were associated with reduced risk of RSV disease.
- Unusually high background immunity led to a low attack rate and low vaccine efficacy in Phase 3:
 - Influenza trials provide precedent for low efficacy in season with low attack rate.
 - Profound vaccine effect seen in both E-201 and 301 against COPD populations.

Next Steps

- Combination of potent immunogen, adjuvant and 2-dose regimen warrants a Phase 2 efficacy trial in older adults and evaluation of COPD exacerbations as a prospective endpoint.
Summary of COPD Opportunity

- Efficacy of Novavax’ RSV F vaccine on COPD exacerbations observed in E-301, and retrospectively confirmed in E-201
- COPD represents an at-risk population for RSV disease
- A significant market opportunity exists with COPD, ~ $1.5 billion globally

Prevalence of COPD Diagnosis Among U.S. Adults (2013)¹

- 15.7M
- 9.3M ≥55 y

Actual prevalence may be >30M due to high proportion of undiagnosed COPD

COPD Mortality Among U.S. Adults

- Leading cause of death due to chronic lower respiratory diseases (>95%)¹
- The third leading cause of death overall in the United States¹

Acute Exacerbations of COPD Among U.S. Adults

- On average, 3 acute exacerbations annually per patient²
- Viral trigger is estimated in 43% of cases²
- RSV associated with 5-10% of exacerbations³

Prevention of acute exacerbations of COPD with the RSV F vaccine would have a significant impact on the clinical and economic burden of COPD in the United States

<table>
<thead>
<tr>
<th>Category</th>
<th>Estimate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV Infections</td>
<td>1,915,682</td>
<td>68.8/100 infant-years = 1,915,682 (in 2015)(^3)*</td>
</tr>
<tr>
<td>Pediatric Outpatient Visits</td>
<td>262,531</td>
<td>Outpatient pediatric practice, annual visits(^4)* Incidence: 132 (95% CI, 46-383) per 1000</td>
</tr>
<tr>
<td>ED Visits</td>
<td>109,388</td>
<td>Rate ≈ 55 (95% CI, 24-126)/1000(^4)*</td>
</tr>
<tr>
<td>Hospitalizations</td>
<td>33,612</td>
<td>Rate ≈ 16.9 (95% CI, 15-19)/1000(^4)*</td>
</tr>
<tr>
<td>Deaths</td>
<td>11-25</td>
<td>Annual estimate(^5,6)</td>
</tr>
</tbody>
</table>

\(^2\) Calculation 3,977,745 x 11/12.

* includes pre-term infants (<37 wks = .9.62% and <33wks = 2.75%)
NVAX RSV F Vaccine Franchise for Both Older Adults (OA) and Infants via Maternal (IVM) is On Track for Success

• NVAX to initiate Phase 2 efficacy trial in OA in 2018

• Pivotal efficacy trial for IVM on target
 • Informational analysis expected by year-end
 • Interim analysis expected to be triggered mid-2018
Questions?